
BAPC 2022
The 2022 Benelux Algorithm Programming Contest

Problems
A Adjusted Average
B Bellevue
C Crashing Competition Computer
D Dividing DNA
E Equalising Audio
F Failing Flagship
G Grinding Gravel
H House Numbering
I Imperfect Imperial Units
J Jagged Skyline
K Kiosk Construction
L Lowest Latency

Copyright © 2022 by The BAPC 2022 jury. This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

Problem A: Adjusted Average 3

A Adjusted Average Time limit: 8s

Torturing data. CC BY
by Timo Elliott on timoelliott.com

As a student of the Biology And Probability Course at your
university, you have just performed an experiment as part of
the practical assignments. However, your results do not look
very nice: you had hoped that the average of your samples
would be different from what it is now.

To improve your results, you decide to let some of your samples
“magically disappear” (i.e., dump them in the waste bin). In
order to not raise suspicion with your teacher, you can remove
only a few of your samples. How close can you possibly get to
your desired average?

Input

The input consists of:

• One line with three integers n, k, and x (2 ≤ n ≤ 1500, 1 ≤ k ≤ 4, k < n, |x| ≤ 109),
the number of samples, the number of samples that may be removed, and the average
you think looks the nicest.

• One line with n integers x (|x| ≤ 109), representing the samples.

Output

Output the minimal absolute difference between x and the average you can obtain by removing
at most k samples from the dataset.

Your answer should have an absolute error of at most 10−4.

Sample Input 1 Sample Output 1
5 2 2
1 2 3 100 200

0

Sample Input 2 Sample Output 2
5 4 -5
-6 -3 0 6 3

0.5

Sample Input 3 Sample Output 3
4 1 4
1 3 3 7

0.333333333333333

This page is intentionally left blank.

Problem B: Bellevue 5

B Bellevue Time limit: 1s

Sunset over the
Mediterranean sea.

CC0 by Ragnar Groot
Koerkamp

As any photographer knows, any good sunset photo has the sun setting
over the sea. In fact, the more sea that is visible in the photo, the prettier
it is!

You are currently visiting the island Bellevue, and you would like to take a
photo of either the sunrise to the east or the sunset to the west to submit it
to Bellevue’s Astonishing Photography Competition. By carefully studying
the topographic maps, you managed to find the east-west profile of the
island. Now you would like to know the maximal amount of sea that you
could capture in a photo, measured as the viewing angle covered by water.

The profile of the island is given as a piecewise linear function consisting of
n − 1 segments between n points. The island starts and ends at sea level.
As an example, Figure B.1 shows the profile of the first sample case.

Note that the viewing angle of your lens is not large enough to capture the ocean to the east
and west of the island in one shot. Also, the viewing angle of sea at sea level is 0 degrees.

Figure B.1: The east-west profile of the island in the first sample case.

Input

The input consists of:

• One line with an integer n (3 ≤ n ≤ 50 000), the number of points.

• n lines with two integers xi and yi (0 ≤ xi, yi ≤ 50 000), a point in the east-west profile
of the island.

It is guaranteed that the points are given from left to right (x1 < x2 < · · · < xn) and that
the island starts and ends at sea level (y1 = yn = 0). The interior of the island is all above
sea level (yi > 0 for 1 < i < n).

Output

Output the maximal viewing angle of sea you can see, in degrees.

Your answer should have an absolute or relative error of at most 10−6.

6 Problem B: Bellevue

Sample Input 1 Sample Output 1
6
0 0
2 1
3 1
4 4
5 1
9 0

45

Sample Input 2 Sample Output 2
5
1 0
5 4
6 1
8 2
9 0

63.4349488

Problem C: Crashing Competition Computer 7

C Crashing Competition Computer Time limit: 4s

A mid-twentieth century punchcard.
CC BY 2.0 by Pete Birkinshaw on

Wikipedia

You are writing code for a hackathon where you need to decode
Binary ALGOL Punch Cards. You have already come up with
the optimal solution and only need to type it out. The solution
consists of c characters, and your typing speed is 1 character
per time unit. However, your computer is prone to sudden
crashes: after every character you type there is a probability of
p that your computer crashes and you need to start over again.
Recovering after a crash costs r time units, and you can then continue typing from the last
point where you saved your code.

You can click “Save” at any time (which costs t time units) to save your code and to be able to
restart from this point after crashes. Clicking “Save” will not cause your computer to crash.

Determine how many (expected) time units you need to complete the code. Note that the
code should be saved after typing the last character.

Input

The input consists of:

• One line with three integers c, t, and r (1 ≤ c ≤ 2000, 0 ≤ t, r ≤ 109), indicating the
number of characters, the time cost of clicking “Save”, and the time cost of recovering
after a crash.

• One line with a floating-point number p (0.001 ≤ p ≤ 0.999, with at most 10 digits after
the decimal point), the probability that your computer crashes after a character press.

Output

Output the expected number of time units you need to complete the code.

Your answer should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
2 1 5
0.25

8.0

Sample Input 2 Sample Output 2
3 5 2
0.5

26.0

Sample Input 3 Sample Output 3
10 4 5
0.327

68.664967357

This page is intentionally left blank.

Problem D: Dividing DNA 9

D Dividing DNA Time limit: 2s

CC BY-NC-SA 2.0 by Argonne
National Laboratory on Flickr

At the Bacteria And Protein Centre, you own a large collection
of DNA. In fact, new strands of DNA come in all the time. To
organise the vast amount of data, you identify each piece by its
unique substrings: substrings that do not already occur in the
database.

Your database can quickly determine whether a given piece of
DNA occurs as a substring in the database or not. Naturally, if a
certain DNA string is found in the database, it also contains all its substrings.

You now want to determine the uniqueness of a given piece of DNA: the maximal number of
disjoint substrings it contains that are absent from the database.

You are given the length n of the query string q1 . . . qn, and you can repeatedly ask the
database whether it contains the substring qi . . . qj−1.

As an example, consider the first sample interaction. In this case, the database contains
strings “TGC” and “CT”, and the query string is “CTGCAA”. It has uniqueness 3, because it
can be split into the new substrings “CTGC”, “A”, and “A”. The new substring “CTGC” cannot
be split up further: for example, the subdivision “CT” and “GC” is not allowed, because both
substrings occur (possibly as substrings) in the database. Note that the actual characters in
the string are not used in the interaction.

You may use at most 2n queries to the database.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

The interactor first sends one line with an integer n (1 ≤ n ≤ 10 000), the length of the DNA
piece for which you need to compute the uniqueness.

Then, your program should make at most 2n queries. Each query is made by printing one line
of the form “? i j” (0 ≤ i < j ≤ n), indicating that you want to query whether the substring
starting at position i and ending at position j − 1 occurs in the database. The interactor will
respond with either “present” or “absent”, indicating whether the substring was found in
the database.

When you have determined the uniqueness x of the piece of DNA, print one line of the form
“! x”, after which the interaction will stop. Printing the answer does not count as a query.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Using more than 2n queries will result in a wrong answer.

10 Problem D: Dividing DNA

Read Sample Interaction 1 Write
6

? 4 6

absent

? 4 5

absent

? 5 6

absent

? 0 1

present

? 0 2

present

? 2 4

present

? 1 4

present

? 0 4

absent

! 3

Read Sample Interaction 2 Write
10

? 0 10

absent

? 0 9

present

? 1 10

present

! 1

Problem E: Equalising Audio 11

E Equalising Audio Time limit: 4s

CC BY-SA 4.0 by Rburtonresearch
on Wikipedia

As a radio engineer at the Balanced Audio Podcast © your job
is to deliver an equal listening experience at all times. You did
a poll among the listeners and they are especially concerned
about fluctuations in loudness. To resolve this you bought a
transformer to equalise the audio, but alas, its software got
corrupted during transport.

Your job is to rewrite the equalising software. As input the
transformer gets n amplitudes a1, . . . , an, with an average perceived loudness of 1

n

∑n
i=1 a2

i .
The output should contain the same amplitudes, but renormalised by some constant positive
factor, such that the average perceived loudness is x. There is one exception: total silence
should always be preserved (i.e., when all amplitudes in the input are 0, they should remain
0).

Input

The input consists of:

• One line with a two integers n and x (1 ≤ n ≤ 105, 0 ≤ x ≤ 106), the number of
amplitudes and the average perceived loudness to achieve.

• One line with n integers a1, . . . , an (|ai| ≤ 106), the amplitudes.

Output

Output one line containing n numbers, the renormalised amplitudes with an average perceived
loudness of x.

Your answers should have an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1
5 6
0 1 -2 3 -4

0 1 -2 3 -4

Sample Input 2
4 1
1 3 3 7

Sample Output 2
0.242535625 0.7276068751 0.7276068751 1.697749375

This page is intentionally left blank.

Problem F: Failing Flagship 13

F Failing Flagship Time limit: 1s

Ahoy! You are sailing towards the next “Boats Are Pretty Cool” convention to sell your latest
gadget: a new type of compass.

On a normal compass, it is difficult to read off the precise wind direction. However, your new
type of compass lets you read off wind directions to a much higher precision! The display can
display strings of at most 1000 characters.

Unfortunately, you have encountered some bad weather. After a few hours of heavy winds
and big waves, you can finally look at your compass again. You read off the wind direction X

you are going and know in which wind direction Y you need to go. However, to make the ship
turn you have to enter the degrees of the angle the ship has to make in the control system.
What is the smallest turn, in degrees, you have to make to get back on the right course?

N

E

S

W

NE

SESW

NW

NNE

ENE

ESE

SSESSW

WSW

WNW

NNW

SSSE

Figure F.1: Wind directions

The conversion of a wind direction to degrees goes as
follows. The four basic wind directions are N, E, S,
and W pointing at 0, 90, 180, and 270 degrees, respec-
tively. There are also four wind directions consisting
of two letters: NE, SE, SW, and NW, pointing at 45,
135, 225, and 315 degrees, respectively.

A wind direction can also consist of k ≥ 3 letters
l1l2 . . . lk. In that case, the last two letters indicate
one of the four two-letter wind directions, i.e., lk−1lk ∈
{NE, SE, SW, NW} and the other letters are equal to
one of these, i.e., li ∈ {lk−1, lk} for all i ≤ k − 2. This
wind direction points precisely in the middle of the
following two wind directions:

• wind direction l2 . . . lk,

• the first wind direction of at most k − 1 letters you encounter when starting in l2 . . . lk
and move along the circle towards l1.

For example, the wind direction SSSE points in the middle of SSE and S, because S is the
first wind direction with at most 3 letters when moving from SSE towards S, as can also been
seen in Figure F.1.

Input

The input consists of:

• One line with two strings X and Y (1 ≤ |X|, |Y | ≤ 1000), indicating the wind directions
as described above.

14 Problem F: Failing Flagship

Output

Output the smallest angle of the turn you have to make to go from direction X to Y , in
degrees. The angle is a non-negative number, irrespective of whether it describes a clockwise
or counter-clockwise turn.

Your answer should have an absolute error of at most 10−6.

Sample Input 1 Sample Output 1
N S 180

Sample Input 2 Sample Output 2
NNE SSSE 146.25

Sample Input 3 Sample Output 3
ENE NW 112.5

Problem G: Grinding Gravel 15

G Grinding Gravel Time limit: 4s

Perfectly ground gravel in a perfect grid.
CC BY-NC 2.0 by markjowen66 on Flickr

During the renovation of your garden, you decide that you
want a gravel path running from the street to your front
door. Being a member of the Boulders And Pebbles Com-
munity, you want this path to look perfect. You already
have a regular grid to put the gravel in, as well as a large
container of gravel containing exactly as much as the total
capacity of the grid.

There is one problem: the gravel does not yet fit perfectly
into the grid. Each grid cell has the same (fixed) capacity
and every piece of gravel has a certain weight. You have a
grindstone that can be used to split the stones into multiple pieces, but doing so takes time,
so you want to do a minimal number of splits such that the gravel can be exactly distributed
over the grid.

As an example, consider the first sample case. There are three grid cells of size 8, which can
be filled as follows. Put the stones of weight 2 and 6 in the first cell. Now grind the stone of
weight 7 into two pieces of weight 3 and 4. Then the other two grid cells get filled by weights
3, 5 and 4, 4 respectively.

Input

The input consists of:

• One line with two integers n and k (1 ≤ n ≤ 100, 1 ≤ k ≤ 8), the number of pieces of
gravel and the capacity per grid cell.

• One line with n integers w1, . . . , wn (1 ≤ wi ≤ 106 for all i), the weight of each piece of
gravel.

It is guaranteed that w1 + w2 + · · · + wn is a multiple of k.

Output

Output the minimal number of times a stone needs to be split into two, such that all the
pieces of gravel can be used to fill all the grid cells perfectly.

Sample Input 1 Sample Output 1
5 8
2 4 5 6 7

1

Sample Input 2 Sample Output 2
2 5
12 13

4

This page is intentionally left blank.

Problem H: House Numbering 17

H House Numbering Time limit: 4s

Numbers. Pixabay License

You are addicted to the latest world-simulation game: Building
A Perfect City. In your current play-through, you have created
a city that has an equal number of streets and intersections.
All that is left is to number the houses in every street.

The city is represented by a connected graph with intersections
and streets. Every street is a connection between two intersec-
tions u and v, and has h houses which are all on one side of the
street. There is at most one street between two intersections.
There are two ways to number the houses in this street: either you start with house number 1
adjacent to intersection u and end with house number h at intersection v, or house number 1
is adjacent to v and house number h is adjacent to u. To avoid confusion, you want to ensure
that no intersection has two adjacent houses with the same number.

Find a way to number the houses in every street that satisfies this property (or report that
it is impossible).

Input

The input consists of:

• One line with an integer n (3 ≤ n ≤ 105), the number of intersections and number of
streets.

• n lines with three integers u, v, and h (u ̸= v, 1 ≤ u, v ≤ n, 2 ≤ h ≤ 109) representing
a street between intersections u and v that has h houses.

It is guaranteed that every intersection is reachable from every other intersection. There is
at most one street between any two intersections.

Output

If it is impossible, output “impossible”. Otherwise, output for each street (in the same
order as the input) a number representing the intersection where the house numbering starts.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
3
1 2 2
2 3 9
3 1 3

1
2
3

18 Problem H: House Numbering

Sample Input 2 Sample Output 2
4
1 2 2
1 3 2
2 3 2
1 4 2

impossible

Problem I: Imperfect Imperial Units 19

I Imperfect Imperial Units Time limit: 4s

False-colour image of a grey hole.
CC BY 4.0 European Southern

Observatory, modified

You are writing a paper for the Beta Astronomy Physics Confer-
ence about your recent discovery on grey holes. One of your col-
laborators has performed a huge number of measurements, which
you would like to analyse in order to draw some conclusions. The
only problem is: the data is measured in a wide variety of units,
and to your disgust, they appear to use a mix of the imperial and
metric systems. To simplify your analysis, you need to convert all
these measurements into a different unit.

Input

The input consists of:

• One line with two integers n and q (1 ≤ n ≤ 100, 1 ≤ q ≤ 10 000), the number of unit
conversion equations and the number of queries to answer.

• n lines, each defining a unit conversion in the format “1 <unit> = <value> <unit>”.

• q lines, each with a query in the format “<value> <unit> to <unit>”.

In these formats, “<value>” is a floating-point number v (0.001 ≤ v ≤ 1000, with at most
9 digits after the decimal point) and “<unit>” is a string of at most 20 English lowercase
letters (a-z). A unit in a query is guaranteed to be defined in at least one unit conversion
equation. Every unit can be converted into every other unit in at most one way.

Output

For every query, output the value of the requested unit, or “impossible” if the query cannot
be answered.

Your answers should have a relative error of at most 10−6.

Sample Input 1
4 3
1 foot = 12 inch
1 yard = 3 foot
1 meter = 100 centimeter
1 centimeter = 10 millimeter
750 millimeter to meter
42 yard to inch
10 meter to foot

Sample Output 1
0.75
1512
impossible

20 Problem I: Imperfect Imperial Units

Sample Input 2
4 3
1 fortnight = 14 day
1 microcentury = 0.036525 day
1 microcentury = 1000 nanocentury
1 week = 7 day
22.2 fortnight to nanocentury
2.5 nanocentury to week
3.14 day to fortnight

Sample Output 2
8509240.2464065708427
1.3044642857142857142e-05
0.22428571428571428572

Sample Input 3
10 2
1 micrometer = 1000 nanometer
1 millimeter = 1000 micrometer
1 meter = 1000 millimeter
1 kilometer = 1000 meter
1 megameter = 1000 kilometer
1 lightsecond = 299.792458 meter
1 lightminute = 60 lightsecond
1 lighthour = 60 lightminute
1 lightday = 24 lighthour
1 lightyear = 365.25 lightday
42 nanometer to lightyear
42 lightyear to nanometer

Sample Output 3
4.439403502903384947e-18
3.9735067984839359997e+20

Problem J: Jagged Skyline 21

J Jagged Skyline Time limit: 4s

The Eindhoven skyline.
CC BY 2.5 by Experience040 on Wikipedia

The future is here! The Boxes And Parcels
Centre has decided to start delivering parcels
using drones. Being a BrAinPort Company,
naturally the first deliveries will be to Eind-
hoven.

To keep the flight logic simple, the first pro-
totype will only deliver to the roofs of the tallest buildings. After take-off, the drone will
take a w × h (1 ≤ w ≤ 10 000, 1 ≤ h ≤ 1018) photo of the skyline, as shown in Figure J.1.
You have been tasked with the problem of determining the location and height of the tallest
building in this photo, so that the drone knows where to go.

You have access to a classifier that can determine for each pixel whether it is “sky” or
“building”. You can use this multiple times for different pixels. To avoid unnecessary
delays, you may run the classifier at most 12 000 times.

It is guaranteed that the buildings will not contain any hovering parts: whenever a pixel that
is not on the bottom row of the photo is classified as building, the pixels below it will also be
classified as building.

Figure J.1: The skyline of the sample interaction.

Interaction

This is an interactive problem. Your submission will be run against an interactor, which
reads from the standard output of your submission and writes to the standard input of your
submission. This interaction needs to follow a specific protocol:

The interactor first sends one line with two integers w and h (1 ≤ w ≤ 10 000, 1 ≤ h ≤ 1018),
the width and height of the photo in pixels.

Then, your program should make at most 12 000 queries to find the highest building. Each
query is made by printing one line of the form “? x y” (1 ≤ x ≤ w, 1 ≤ y ≤ h). The
interactor will respond with either “sky” or “building”, indicating the classification of the
pixel at coordinates (x, y).

22 Problem J: Jagged Skyline

When you have determined the x-coordinate of one of the highest buildings and its height y,
print one line of the form “! x y” (1 ≤ x ≤ w, 0 ≤ y ≤ h), after which the interaction will
stop. Printing the answer does not count as a query.

The interactor is not adaptive: the skyline is fixed up front, and does not depend on your
queries.

If there are multiple valid solutions, you may output any one of them.

Make sure you flush the buffer after each write.

A testing tool is provided to help you develop your solution.

Using more than 12 000 queries will result in a wrong answer.

Read Sample Interaction 1 Write
10 6

? 1 1

sky

? 3 5

building

? 7 3

sky

? 9 2

building

! 3 5

Problem K: Kiosk Construction 23

K Kiosk Construction Time limit: 8s

CC BY 2.0 by Zion
National Park on Flickr

You are planning to start a Beautifully Arranged Placid Camping. You
already have bought a field, which you have divided into a h × w-grid
of plots, and numbered them with distinct numbers aij from 1 to h · w.
However, you forgot one thing: you still need to place the reception
kiosk at one of the plots. You want to minimise the maximal distance
that any guest will walk from the reception kiosk to their plot. Guests
will however not take the shortest path to their plot, but instead they
follow the following procedure, starting at the reception kiosk:

• Look at the numbers of the four neighbouring plots.

• Go to the plot with the number closest to the destination number.
In case of a tie, out of the two tying plots, go to the one with the
number closest to the current plot number.

• Repeat until the destination is reached.

Note that this procedure might not terminate in some cases.

Given the numbering of the plots, find the plot number of the optimal position for the reception
kiosk and the maximal walking distance to any plot from this kiosk. If, for every possible
position for the reception kiosk, there is at least one plot for which the procedure outlined
above does not terminate, output that this is impossible.

Figure K.1 shows the third sample case: one solution is to put the kiosk in plot 4, so that
every other plot is at most distance 3 away. Placing the kiosk in plot 7 does not work as plot
9 cannot be reached from there.

Figure K.1: Visualisation of the third sample case.

24 Problem K: Kiosk Construction

Input

The input consists of:

• One line with two integers h and w (2 ≤ h, w ≤ 40), the dimensions of the camping.

• h lines, the ith of which contains w integers ai,1, . . . , ai,n (1 ≤ ai,j ≤ h · w), the plot
numbers. It is guaranteed that all numbers from 1 to h · w occur exactly once.

Output

If there is a position for the reception kiosk such that every other plot can be reached, then
output the optimal position for the reception kiosk and the corresponding maximal walking
distance. Otherwise, output “impossible”.

If there are multiple valid solutions, you may output any one of them.

Sample Input 1 Sample Output 1
2 3
1 2 3
6 5 4

2 2

Sample Input 2 Sample Output 2
3 3
1 4 8
7 5 2
3 9 6

impossible

Sample Input 3 Sample Output 3
3 3
9 3 1
4 7 2
8 6 5

4 3

Problem L: Lowest Latency 25

L Lowest Latency Time limit: 5s

Connecting the earth with
cables to other planets.

Free to use, by PxFuel, modified

It is the year 2222. The whole universe has been explored, and
settlements have been built on every single planet. You live in
one of these settlements. While life is comfortable on almost all
aspects, there is one dire problem: the latency on the internet
connection with other planets is way too high.

Luckily, you have thought of a solution to solve this problem:
you just need to put Bonded, Astronomically Paired Cables
between all planets, and internet will be super fast! However,
as you start developing this idea, you discover that constructing
a cable between two planets is more difficult than expected. For
this reason, you would like the first prototype of your cable to
be between two planets which are as close as possible to each
other.

From your astonomy class, you know that the universe is best modelled as a large cube
measuring 109 lightyears in each dimension. There are exactly 105 stationary planets, which
are distributed completely randomly through the universe (more precisely: all the coordinates
of the planets are independent uniformly random integers ranging from 0 to 109).

Given the random positions of the planets in the universe, your goal is to find the minimal
Euclidean distance between any two planets.

Input

The input consists of:

• One line with an integer n, the number of planets.

• n lines, each with three integers x, y, and z (0 ≤ x, y, z < 109), the coordinates of one
of the planets.

Your submissions will be run on exactly 100 test cases, all of which will have n = 105. The
samples are smaller and for illustration only.

Each of your submissions will be run on new random test cases.

Output

Output the minimal Euclidean distance between any two of the planets.

Your answer should have an absolute or relative error of at most 10−6.

26 Problem L: Lowest Latency

Sample Input 1 Sample Output 1
5
10 5 1
8 2 0
4 7 5
1 0 9
0 10 7

3.7416573867739413

Sample Input 2
3
790726336 656087587 188785845
976472310 22830435 160538063
211966015 87530388 542618498

Sample Output 2
660540781.9387681

	Problems
	Adjusted Average
	Bellevue
	Crashing Competition Computer
	Dividing DNA
	Equalising Audio
	Failing Flagship
	Grinding Gravel
	House Numbering
	Imperfect Imperial Units
	Jagged Skyline
	Kiosk Construction
	Lowest Latency

